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ABSTRACT

A feed forward neural network (FFNN) is developed for tropical cyclone (TC) intensity prediction, where

intensity is defined as the maximum 1-min average 10-m wind speed. This deep learning model incorporates a

real-time operational estimate of the current intensity and predictors derived from Hurricane Weather Re-

search and Forecasting (HWRF; 2017 version) Model forecasts. The FFNN model is developed with the

operational constraint of being restricted to 6-h-old HWRF data. Best track intensity data are used for ob-

servational verification. The forecast training data are from 2014 to 2016 HWRF reforecast data and cover a

wide variety of TCs from both the Atlantic and eastern Pacific Ocean basins. Cross validation shows that the

FFNN increasingly outperforms the operational observation-adjusted HWRF (HWFI) in terms of mean

absolute error (MAE) at forecast lead times from 3 to 57 h. Out-of-sample testing on real-time data from 2017

shows the HWFI produces lower MAE than the FFNN at lead times of 24 h or less and similar MAEs at later

lead times. On the other hand, the 2017 data indicate significant potential for the FFNN in the prediction of

rapid intensification (RI), with RI defined here as an intensification of at least 30 kt (1 kt ’ 0.51m s21) in a

24-h period. The FFNN produces 4 times the number of hits in HWFI for RI. While the FFNN has more false

alarms than the HWFI, Brier skill scores show that, in the Atlantic, the FFNN has significantly greater skill

than the HWFI and probabilistic Statistical Hurricane Intensity Prediction System RI index.

1. Introduction

The prediction of tropical cyclone (TC) intensity,

typically defined by operational forecast centers as the

1-min averaged maximum 10-m wind speed, is a chal-

lenge that has received significant attention from the

research and operational forecast communities in re-

cent decades. Rapid intensification (RI), commonly

defined as the 95th percentile of 24-h intensity change

prediction (Kaplan et al. 2010), has been a particularly

daunting problem for operational intensity prediction.

Computing resources are increasingly able to resolve the

various scales of motion in TCs, handle more advanced

data assimilation, and support dynamical ensembles to

improve forecast accuracy and the estimation of fore-

cast uncertainty. However, improvements in intensity

forecast skill have lagged compared to many other im-

portant forecast problems such as TC track prediction

(DeMaria et al. 2014). The primary hindrances to in-

tensity prediction include uncertainty in the observa-

tions of 1-min sustained wind speed estimates (e.g., Torn

and Snyder 2012; Landsea and Franklin 2013; Nolan

2014) and also the conditional high sensitivity of TC

intensity to subtle changes in the initial conditions andCorresponding author: Brian J. Reich, bjreich@ncsu.edu
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its environment and track at later forecast lead times

(e.g., Zhang et al. 2014; Judt et al. 2016; Emanuel and

Zhang 2016). Intensity prediction error growth is most

rapid in the first 48 h, commencing at the smallest spatial

scales, and with increasing time, at the larger scales.

With this in mind, reducing the error growth rate over

the first two days of a forecast is a worthwhile endeavor

in reducing the overall intensity forecast error.

Despite relatively slow progress, numerical weather

prediction (NWP) model forecasts of intensity and RI

are improving (DeMaria et al. 2014; Cangialosi 2017).

Moreover, postprocessing techniques can be applied

to NWP and statistical model output to create more

accurate forecasts of intensity. A simple multimodel

ensemble of intensity forecasts is a widely used tech-

nique in operational forecasting. An equally weighted

average of intensity predictions from independent

models, known as a consensus, often outperforms

the constituent models (Sampson et al. 2008; Goerss

and Sampson 2014). The multimodel superensemble

technique of Krishnamurti et al. (1999) has also

demonstrated the value in applying unequal weights in

its consensus of several bias-corrected models (e.g.,

Williford et al. 2003; Simon et al. 2018). Most recently,

Ghosh and Krishnamurti (2018) illustrated the promis-

ing use of a generalized regression neural network in

deriving a weighted multimodel consensus forecast for

intensity.

Another promising approach in the realm of post-

processing is to calibrate current forecasts from a NWP

or statistical model using past forecasts from the same

model along with accompanying historical observa-

tional data. Some examples of these types of post-

processing techniques for a deterministic model or a

single-model ensemble include simple bias correction,

multivariate linear regression, Bayesian model aver-

aging (Raftery et al. 2005), nonhomogeneous Gaussian

regression (Feldmann et al. 2015), quantile mapping

(Déqué 2007; Alessandrini et al. 2018, hereafter A18),

and analog ensembles (e.g., A18). For an example in

TC intensity prediction, Bhatia and Nolan (2017)

provided a postprocessing method that improves in-

tensity predictions by using a stepwise multiple linear

regression formula on large-scale meteorological pre-

dictors, along with information describing the atmo-

spheric flow stability and the uncertainty in initial

conditions, to predict forecast intensity error in oper-

ational prediction schemes. A18 also addressed in-

tensity prediction with the analog ensemble method.

More recently, machine learning has gained increasing

prominence in postprocessing. Evolutionary program-

ming, simple neural networks, and deep learning have

shown significant promise as postprocessing tools (e.g.,

Gagne et al. 2014;McGovern et al. 2017; Roebber 2018;

Rasp and Lerch 2018). All postprocessing techniques,

of course, benefit from more extensive training data-

sets. Therefore, it is imperative to have a sufficiently

large archive of previous forecasts or reforecasts, ide-

ally with the same model configuration as used in cur-

rent operations. Postprocessing techniques also vary

in the complexity of input predictors, ranging from a

single predictor that is the predicted quantity of in-

terest itself (in our case, TC intensity) to a larger set

of more complex spatiotemporal predictors describing

various features in the model forecast fields (e.g., A18).

An area inmachine learning–based postprocessing for

TC intensity prediction that has not yet been deeply

explored is incorporating physical details from the

model output fields into deep learning methods. In

A18’s analog ensemble approach for TC intensity pre-

diction, exploiting information about a TC’s inner core

and environment from an NWP model for TCs helped

produce a more skillful forecast of intensity than using

an analog ensemble based solely on the NWP model’s

intensity itself. In the analog ensemble of A18, a cali-

brated ensemble prediction of TC intensity was de-

veloped for a deterministic TC model by seeking a fixed

number of analog forecasts from historical data that

resemble the current forecast. This was accomplished

using a set of predictors that includes the model’s pre-

dicted intensity itself and a couple of other predictors

typically describing the kinematic or thermodynamic

aspects of a storm’s inner core or environment. Given

the model’s success in improving intensity forecasts, it

is of interest to apply machine learning to a similarly

wide ranging set of physical predictors related to TC

intensity change.

This paper describes a feed forward neural network

prediction tool for TC intensity derived from an op-

erational, full-physics, high-resolution TC model.

Section 2 describes the full-physics model that is the

basis of this study, along with the various datasets used.

The feed forward neural network postprocessing tool

and methods for design and testing are described in

section 3. Results highlighting the neural network’s

ability to predict intensity and RI are presented in

section 4, followed by the conclusions in section 5.

2. Data sources

a. HWRF

The U.S. Environmental Modeling Center (EMC)’s

2017 operational configuration of the HurricaneWeather

Research and Forecasting (HWRF)Model (Biswas et al.

2017) (version 3.9a; hereafter referred to as H217) forms
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the basis of the data used to construct a neural network

postprocessing tool. This full-physics model is a pri-

mary tool used at the U.S. National Weather Service

(NWS)’s National Hurricane Center (NHC) for the

prediction of TC track, intensity, and wind structure.

HWRF is a primitive equation, nonhydrostatic, cou-

pled atmosphere–ocean model with a parent domain

and two inner TC-following nested grids. The parent

domain possesses 18-km horizontal grid spacing and

covers about 808 3 808 on a rotated latitude–longitude

E-staggered grid centered on a 72-h forecasted TC

position, while the inner grids have 6- and 2-km grid

spacing and domain sizes of 248 3 248 and 78 3 78,
respectively. For the Atlantic and eastern Pacific

Ocean basins examined in this study, the model top

is 10 hPa and 75 vertical levels are used. More de-

tails on the HWRF physics schemes, ocean coupling,

and initialization procedures can be found in Biswas

et al. (2017).

Each year, the EMC updates the operational HWRF

to take advantage of improved computing capabilities,

initialization procedures, and model components. In

the annual process of improving the HWRF, refor-

ecasts of storms from a small set of previous seasons

are carried out in the Atlantic and eastern Pacific

Ocean basins for HWRF testing and evaluation pur-

poses. These reforecast data are also essential for

postprocessing and forecast calibration techniques

(e.g., A18). For the H217 configuration, reforecast data

for TCs in the years 2014–16 are available. A set of

physically based predictors are derived from the re-

forecast output fields to construct the deep-learning

model. To subject the model to the rigors of a quasi-

operational environment, the same set of predictors are

obtained fromH217 real-time forecasts during the 2017

hurricane season to evaluate the model’s real-time

performance in 2017.

It is important to note that the initialization for the

reforecasts includes observation-based estimates of the

storm’s current intensity and position from the hurri-

cane database (HURDAT2; Landsea et al. 2015), which

is the final estimate of observations available after a

hurricane season ends. In an operational environ-

ment, HWRF forecasts are based on a preliminary set

of observations, implying the reforecasts will likely

possess better error characteristics than real-time

data. In addition, in the operational environment,

while the HWRF is carried out at the synoptic times of

0000, 0600, 1200, and 1800 UTC, each HWRF run is

completed after the NHC has already issued its in-

tensity forecast. The constraints of the operational

environment require the NHC to use a 6-h-old HWRF

forecast in each of its intensity forecasts. This older

run of the HWRF is colloquially referred to as an

‘‘early model.’’ Given the seasoned age of the forecast

at the time of the NHC forecast, the NHC applies a

simple correction to the HWRF intensity predic-

tion that accounts for the current estimate of intensity.

This correction is typically applied over the first 96 h of

the forecast. The correction is linearly tapered in time

from a full correction at a lead time of 0h to no correction

at a lead time of 96h (Goerss et al. 2004; Sampson et al.

2006, 2008). This corrected (‘‘interpolated’’) HWRF in-

tensity prediction is referred to at NHC as the HWFI.

To be consistent with the operational environment, the

prediction technique described in this paper is developed

using the ‘‘early,’’ 6-h-old version of the HWRF. This

approach also provides a more realistic validation of the

feed forward neural network by allowing a fair compar-

ison with operational tools that are used in official NHC

intensity forecasts.

b. Constructed covariates

Eighteen predictors are incorporated into the deep

learning-based postprocessing method for intensity

prediction. These predictors are derived directly from

HWRF output fields that are available at 3-h increments

for each 126-h forecast. These forecast fields are used to

derive storm-centered predictors describing thermody-

namic and kinematic aspects of the storm’s large-scale

environment and inner core. Most predictors are axi-

symmetric with respect to the storm center while a few

additional predictors related to azimuthal asymme-

tries are included. The choice of predictors is based

on physical characteristics linked to intensity change

in previous studies (e.g., Schubert and Hack 1982;

Emanuel 1986; Miyamoto and Takemi 2013; Rogers

et al. 2013; Kaplan et al. 2015; A18). In addition to the

HWRF-based predictors, the HWFI intensity pre-

diction itself, the initial operational estimate of in-

tensity, and a binary indicator representing whether

a storm is in the eastern Pacific or Atlantic Ocean

basin are also included as model predictors. The list of

predictors is described in detail in Table 1. The mean

and standard deviation of each predictor (except for

the ocean basin indicator) are provided to give the

reader a sense of typical predictor values.

c. Verification dataset

The HURDAT2 database (Landsea and Franklin

2013), which contains multiplatform-based estimates

of a TC’s intensity throughout its lifetime, is used as

the verifying observational benchmark in which to val-

idate the deep learning technique described in this pa-

per. To further evaluate the performance of the deep

learning model, we compare the deep learning model
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with the performance of the HWRF prediction for

intensity itself, along with the National Oceanic and

Atmospheric Administration (NOAA)’s official NHC

forecast of TC intensity.

3. Deep learning model

a. General model

The model used is a standard feed forward neural

network withL layers. Given an input vector of features

x (we use all of the variables in Table 1), the first layer is

simply a1j 5 xj, the jth input predictor. Subsequent layers

l 2 f2, 3, . . . , Lg form linear combinations of outputs

from the previous layer and apply a possibly nonlinear

activation function:

alj 5s

 
�
k51

K

wl
jka

l21
k 1 bl

j

!
,

where wl
jk is the weight from the kth neuron in the

(l2 1)th layer to the jth neuron in the lth layer and s(x)

is the activation function. The predicted intensity is

ŷ(x)5 aL1 , which is a nonlinear function of x determined

by the weights wl
jk and biases bl

j. A depiction of this ar-

chitecture is given in Fig. 1.

The weights and biases must be estimated from the

training data. The Lp regularization was applied to all

weights in the network with a penalty factor of l. 0,

tuned during cross validation in order to shrink

the weights of the network. Regularization stabi-

lizes the parameter estimates by shrinking them

toward zero to avoid over fitting. The cost func-

tion used was mean squared error, along with the

Lp-regularization term:

1

n
�
n
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[ŷ(x
i
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i
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p
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TABLE 1.A complete list of all 18 predictors incorporated into the neural network. All predictors are derived fromHWRFoutput unless

stated otherwise. Below, r, p, and T represent radius, pressure, and temperature, respectively. The mean and standard deviation of the

predictors are provided in the two rightmost columns as well.

Description of predictor class

No. of predictors

for this class Mean Std dev

Latitude of storm center (8N) 1 24.0 9.9

Longitude of storm center (8W) 1 107.1 3.9

‘‘Interpolated’’ maximum 1-min 10-m wind speed (HWFI) (kt) 1 49.7 23.9

Minimum sea level pressure (hPa) 1 991.9 19.9

850–200-hPa vertical wind shearmagnitude averaged over 0# r, 500 km (kt) 1 20.7 13.6

Storm translation speed (kt) 1 11.1 6.7

Sea surface T averaged over 0# r, 50 km (K) 1 296.7 9.1

Relative humidity (200# r, 800 km) averaged over the layer

850#p, 700 hPa (%)

1 66.7 8.8

Convective available potential energy averaged over 0# r, 100 or

200# r, 500 km (J kg21)

2 1132.0/1059.9 836.8/681.9

Surface turbulent sensible heat fluxes averaged over 100# r, 200 km (Wm22) 1 8.6 16.4

Total condensate averaged over 100# r, 250 km (g kg21) 1 12.3 9.8

Two inertial stability-based parameters averaged over 850#p, 500 hPa and

0# r, 100 or 100# r, 250 km (1026 s22)

2 4.2/0.2 5.2/0.2

Symmetry parameter (as defined in Miyamoto and Takemi 2013) for total

condensate and the coupling of inertial stability/vertical motion, over

850#p, 500 hPa and 0# r, 100 and 100# r, 250 km, respectively (%)

2 31.9/48.8 14.9/21.8

Operational estimate of the maximum 1-min 10-m wind speed at the initial

time (kt)

1 57.6 28.8

A binary indicator specifying whether a storm is in the Atlantic or eastern

Pacific basin

1 — —

FIG. 1. Neural network architecture: feed forward neural net-

work model that maps the predictors x in Table 1 to the forecast

ŷ(x). This example network has two hidden layers with four and

three neurons, respectively.
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All input variables were normalized before training the

neural network by subtracting the mean and dividing

by the standard deviation of each predictor across the

training set [i.e., xi,norm 5 (xi 2 xtrain)/strain].

b. Treatment of missing data

The HWRF model data output includes missing

values that come from different sources, including

corrupted data and intentionally omitted data where

relevant (e.g., if the storm crosses over land or the

storm in a weaker stage gets lost by the vortex tracker).

Every feature has at least 5% missing values. Some

had up to 19%. We tried a few methods for han-

dling missing values, including indicator (‘‘dummy’’)

terms in the model for each predictor and data re-

placement (in particular, multiple imputation by linear

regression), but none of these provided a meaningful

performance improvement over the naive approach of

simply replacing eachmissing value for a given predictor

with the mean across all nonmissing values of that pre-

dictor in the training dataset (i.e., xi,norm 5 0 if xi is

missing).

c. Tuning and model selection

The model training assumed 6-h-old HWRF data at

the forecast time to be consistent with operational

constraints. Model tuning was performed using tenfold

cross validation on the 2014–16 reforecast data, with the

same random partition used for all runs. Combinations

of the following model configurations were attempted:

between L5 1 and L5 4 hidden layers, from K5 100

to K5 4000 neurons per layer, sigmoid {s(x)5
1/[exp(2x)1 1]} versus rectified linear unit [ReLu;

s(x)5 x if x. 0 and s(x)5 0 if x# 0] activation

functions, and L1 versus L2 regularization methods.

These combinations were evaluated based on test set

performance across all 10 sets. This tuning process

was performed on 3-h lead time data, with occasional

checks for performance across lead times 3–75 h.

Once strong model candidates were selected on the

basis of the 3-h lead time performance, we ran tenfold

cross validation separately for each of the 3-, 6-, . . . , 75-h

lead times and computed the mean absolute error

(MAE) across test sets for each lead time.

The final architecture selected used three layers:

the input layer, a densely connected hidden layer with

K5 1300 sigmoid neurons, and a single linear output

layer. We also applied a small L1 penalty (l 5 0.001) to

all weights in the network. Results from this model are

plotted versus lead time in Fig. 2. Based on these com-

parisons, we tuned the aforementioned configurations in

order to minimize cross-validated MAE for 2014–16

storms across all lead times.

d. Cross-validation design

To assess model performance, we once again empl-

oyed tenfold cross validation, maintaining total sep-

aration of testing–training sets for each iteration.

Therefore, the model is tuned using only the training

data to avoid bias caused by tuning and testing on the

same test set observations. To create the partition, we

randomly assigned each of the 94 unique storms to a set

such that the sets were approximately equal sized. We

chose to partition by storms rather than individual

observations because observations within a storm are

highly correlated and allowing them to be assigned to

multiple sets might result in overfitting (Arlot and

Celisse 2010).

Within each training–testing pair, neural net weights

were reinitialized so that no learning from the previous

step carried over. Normalization and imputation were

then applied to the nine training sets, and the mean and

standard deviation of each predictor in the nine training

sets was used to apply normalization and imputation to

the test set.

At the end of this process, each observation had one

test prediction ŷi,test and model performance was eval-

uated using MAE across those values:

1

n
�
n

i51

jŷ
i,test

2 y
i
j.

These results are presented in the next section.

FIG. 2. Cross-validation assessment of forecast accuracy: com-

parison of the MAE for the baseline HWRF (light green), HWFI

(dark green), NHC (blue), and neural network (orange) intensity

forecasts across different prediction lead times. Error bars show

bootstrapped confidence interval lengths for error terms between

the neural network and HWFI forecasts, computed by storm-level

resampling of observed absolute errors. The length of the interval

is the difference between the 95th and 5th percentile of values for

MAE that were calculated under resampling. Note that these in-

terval lengths correspond to symmetric intervals about the values

given in the curve but are shifted down on the plot for visual clarity.
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4. Results

a. Cross-validation prediction accuracy

Model performance was evaluated using the MAE

across observations in all testing sets in tenfold cross

validation, reported in Table 2 for all lead times, in-

cluding sample size information. We also plot this in-

formation in Fig. 2, showing that the neural network

(NN) model offers a substantial performance increase

over the base, uncorrected HWRF model for 2014–16

reforecast cases. The NN has similar performance to the

HWFI at lead times of 3–6h, but becomes increasingly

better at later lead times, with statistically significant

differences at the 95% level according to bootstrap

confidence intervals. The NN also has slightly improved

performance over the NHC official intensity forecast for

certain lead times.

b. Out-of-sample prediction accuracy

To gain insight into how the NNmodel would actually

perform in an operational environment, we conducted

out-of-sample validation on a dataset of 2017 storms

that was not available during the model fitting process.

The basis of the 2017 validation is real-time HWRF

forecasts. As stated earlier, the real-time HWRF is ini-

tialized with operational estimates of various vortex

parameters such as the intensity. On the other hand, the

reforecast data used for themodel fitting process employ

the more accurate, refined best track data for initiali-

zation. To assess true model performance, we simulated

operational conditions as closely as possible: the 6-h-

old (‘‘early’’) operational HWRFwas used, predictions

were made sequentially in time, and the model was

refitted on new storms once they had ended. If two

storms overlapped in time, the model would not be

refitted until both storms had expired. This ensured

that the model only ever utilized information that

would have been available in real world usage. The

specific algorithm used is as follows.

For each lead time (3, . . . , 72):

1) Initialize training dataset as all observations for

storms in 2014–16 (at the given lead time).

2) Reset neural net weights to the initial settings, and

then fit neural net on the current training dataset.

3) Predict intensity (VMAX) for each observation in

the first storm in 2017 that has not been tested yet.

4) If the storm tested in step 3 ends before the next

storm in 2017 begins, add it to the training set and

return to step 2. Otherwise, store it in memory

until it can be added to the training set, and return

to step 3. Repeat until all storms in 2017 have

been tested.

There were 21 storms in the 2017 data (Table 3), corre-

sponding to 13 training batches of TCs. The updated 2017

configuration of HWRF used in this study was not

TABLE 2. Cross-validation results for 2014–16 storms, shown for all lead times and competitor models, measured in mean absolute error.

Lead time No. of obs No. of storms NHC NN HWRF HWFI

3 2512 120 3.044 3.311 5.464 3.267

6 2510 120 4.137 4.652 6.591 4.726

9 2480 119 4.774 5.293 7.053 5.566

12 2480 119 5.669 6.391 7.718 6.740

15 2424 119 6.484 6.723 7.939 7.276

18 2424 119 7.411 7.569 8.516 8.175

21 2382 117 7.849 7.860 8.782 8.619

24 2382 117 8.503 8.487 9.314 9.393

27 2314 115 8.983 8.633 9.420 9.721

30 2314 115 9.557 9.221 9.805 10.301

33 2267 112 9.757 9.416 9.944 10.567

36 2267 112 10.112 9.929 10.362 11.075

39 2174 106 10.461 10.042 10.588 11.279

42 2174 106 10.807 10.398 10.950 11.632

45 2131 104 10.791 10.361 10.952 11.682

48 2131 104 10.941 10.685 11.126 12.025

51 1972 100 11.400 10.838 11.316 12.312

54 1972 100 11.675 11.015 11.504 12.525

57 1934 98 11.673 10.840 11.475 12.491

60 1934 98 11.854 11.046 11.616 12.686

63 1881 98 11.845 10.882 11.507 12.529

66 1881 98 11.958 10.986 11.514 12.546

69 1826 98 11.846 10.831 11.337 12.528

72 1826 98 11.799 11.009 11.376 12.675
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implemented operationally until the beginning of August

2017. Therefore, the out-of-sample validation dataset

does not include numerous storms from 2017. None-

theless, the Atlantic portion of the dataset contains a

significant number of major hurricanes, with 6 TCs ex-

ceeding 100-kt intensity (1 kt’ 0.51m s21). On the other

hand, the eastern Pacific data sample is smaller and only

includes two major hurricanes.

Results for the real-time validation are shown in

Fig. 3. For the validation set, the NN never greatly

outperforms the HWFI, and in fact performs slightly

worse in the first 24 h, although it outperforms the

baseline HWRF model in the first 18 h and performs

better than the official NHC forecast after 27 h.

We also assessed model accuracy by converting the

models’ continuous wind speed predictions into binary

predictions of rapid intensification (RI), where RI is

defined in this paper as a 30-kt increase or greater in

VMAX from the time of forecast to 24 h in the future.

We say the model predicts RI if its 24-h prediction for

VMAX is at least 30 kt greater than operational VMAX

at the time of prediction. This follows the conventional

RI threshold being defined as the 95th percentile of in-

tensity change (e.g., Kaplan and DeMaria 2003; Kaplan

et al. 2010).

Given this definition, we evaluated the skill of

RI prediction for the NHC, HWFI, and NN according

to the Gilbert skill score (equitable threat score),

a function of hits, misses, and false alarm rate

defined as

hits2 hits
random

hits2hits
random

1misses1 false alarms
,

with hitsrandom 5 (hits1misses)(hits1 false alarms)/total.

Therefore, this score measures skill in forecasting RI

events compared to random guessing based on the ob-

served frequency ofRI events. This is a commonmetric for

evaluating forecast accuracy that emphasizes true positives

over true negatives (Wilks 2006).

Table 4 shows the results on the out-of-sample 2017

dataset, which are promising. With 5 hits, 44 misses, and

TABLE 3. A list of the 2017 tropical cyclones used in the out-of-sample validation set, along with the basin in which each storm occurred

and the maximum intensity (kt) of the storm.

Tropical cyclone name Basin Max intensity (kt) Dates active

Franklin Atlantic 75 7–10 Aug

Gert Atlantic 95 12–17 Aug

Harvey Atlantic 115 17 Aug–1 Sep

Nontropical disturbance 10 Atlantic 40 27–29 Aug

Irma Atlantic 155 30 Aug–12 Sep

Jose Atlantic 135 5–22 Sep

Katia Atlantic 90 5–9 Sep

Lee Atlantic 100 14–30 Sep

Maria Atlantic 150 16–30 Sep

Nate Atlantic 80 4–8 Oct

Ophelia Atlantic 100 9–15 Oct

Rina Atlantic 50 4–9 Nov

Tropical depression 11 Eastern Pacific 30 4–8 Aug

Jova Eastern Pacific 35 11–13 Aug

Kenneth Eastern Pacific 115 18–23 Aug

Lidia Eastern Pacific 55 29 Aug–3 Sep

Max Eastern Pacific 80 13–15 Sep

Norma Eastern Pacific 65 14–19 Sep

Otis Eastern Pacific 100 11–19 Sep

Pilar Eastern Pacific 45 22–25 Sep

Selma Eastern Pacific 35 26–28 Oct

FIG. 3. Out-of-sample assessment of forecast accuracy: com-

parison of baselineHWRF (light green), HWFI (dark green), NHC

(blue), and neural network (orange) performance by MAE on the

out-of-sample 2017 data. Error bars showing bootstrapped confi-

dence intervals are as described in Fig. 2.
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0 false alarms, the NHC is conservative when it comes to

detection of RI events. The HWFI also had a significant

number of misses (43), but now also had 2 false alarms.

In contrast, the NN successfully identified the most RI

events with 24 hits, with the least number of misses

(25), although it had an elevated false alarm rate (13).

Nonetheless, the NN’s high hit rate resulted in a sig-

nificantly higher Gilbert skill score than the NHC

and HWFI.

Another way to evaluate the predictive skill of RI

forecasting methods is through the Brier skill score

(BSS). The BSS is defined here with respect to the

training data’s baseline climatological probability of

RI. The climatological frequency of RI events in the

Atlantic and eastern Pacific basins combined is 11.4%

for this dataset, slightly higher than a climatology defined

over a longer period of time (e.g., Kaplan et al. 2010). The

BSS allows for comparison of the deterministic aids,

which either predict RI (100%probability) or do not (0%

probability), with operational probabilistic RI models

(which have a continuous distribution of probabilities

between 0 and 100%). Figure 4 shows the 2017 real-time,

out-of-sample BSS for the NN, the probabilistic Statis-

tical Hurricane Prediction System (SHIPS) RI index

(RII) (SHIPS-RII; Kaplan et al. 2015), HWFI, and the

NHC, for both the Atlantic and eastern Pacific Ocean

basins combined, and also for each basin individually.

This comparison is homogeneous in that the BSS only

considers forecast times in which forecasts are produced

by all of the methods. Because there was some missing

SHIPS-RII data, the sample here is slightly smaller

than the sample used in Table 4 for the Gilbert skill

score calculations.

For both basins combined, the sample size is 423 and

contains 48 RI cases. The BSS values shown in Fig. 4 are

consistent with the earlier Gilbert skill scores. The NN

has a BSS of 22.5% while the HWFI is 212.8%. Be-

cause the NHC has a lower probability of detection, it

is also negative in this particular sample (28.1%). The

SHIPS-RII is competitive with the NN with a BSS of

18.5%. The majority of the 2017 sample is from the

Atlantic, with a sample size N5 318 and 39 RI cases.

All methods perform better here than in the com-

bined basin sample.Moreover, the BSS of the NN is now

substantially higher than the next best performing

SHIPS-RII (38.7% vs 22.7%). On the other hand, the

eastern Pacific shows drastically different results, with a

very negative BSS for the NN (244.4%), which is even

lower than the HWFI. The SHIPS-RII is uncharacteristi-

cally poor compared to larger samples examined inKaplan

et al. (2015), with a barely skillful model, but it is still sig-

nificantly better than all other forecasts. It is important to

note the eastern Pacific has a small sample size ofN5 105

and only had 9 RI events in this period of study.

A small sample size limits the conclusions that can be

drawn from the negative eastern Pacific BSS values, but

it is even more mysterious why the NN is worse in that

basin than the HWFI in terms of BSS. To gain further

insight into the BSS of the NN and operational HWFI

that the NN incorporates, Fig. 5 shows all of the NN and

HWFI 24-h intensity change predictions for the 2017

samples for the individual ocean basins. The data here

are sorted in ascending order. Moreover, forecasts that

are at times in which RI actually verified in the following

24 h are highlighted in cyan in Fig. 5. In the Atlantic,

Figs. 5a and 5b show that the NN tends to bias correct

the HWFI toward higher intensity change values. As a

result, more NN predictions correctly predict RI. The

NN simultaneously reduces the number of false alarms

in the Atlantic. The higher HWFI and NN intensity

change predictions both tend to correlate with verifying

observations of RI, but clearly the NN appears to be

improving upon the HWFI. Figures 5c and 5d show

some similar patterns in the eastern Pacific, in that

TABLE 4. Rapid intensification detection on out-of-sample val-

idation set, by prediction (n 5 452 predictions per model across

23 storms).

Index Total Hits Misses False alarms Gilbert skill score

NHC 452 5 44 0 0.092

HWFI 452 6 43 2 0.102

NN 452 24 25 13 0.345

FIG. 4. Brier skill score: the 2017 out-of-sample BSSs with a

baseline of the climatology for 24-h RI probabilities predicted by

the SHIPS-RII (gray), HWFI (dark green), NHC (blue), and NN

(orange). The BSS is shown for 2017 including predictions from

both the Atlantic and eastern Pacific Ocean basins and also by

single basin. The total sample size N and the total number of ob-

served RI events NR is shown along the x axis.
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there is some positive correlation between verifying

RI observations and more positive intensity change

predictions. In addition, the correlation is better for the

NN. Thus, the NN appears closer to making correct RI

predictions, but the NN intensity change predictions

are still not quite high enough for the times in which RI

is actually occurring. Now, the NN makes three false

RI predictions versus the two false predictions by the

HWFI. Because the sample size is small, this produces a

significant degradation in the BSS for the NN despite

its overall improved intensity change predictions for

higher end intensity change values. Thus, the NN ap-

pears to improve upon the upper end 24-h intensity

change predictions in both basins, despite the poor BSS

in the eastern Pacific. Additionally, the more data rich

Atlantic produces substantially better BSS than the

operational SHIPS-RII prediction.

These results suggest that neural networks have a role

to play in the detection of RI events, even in cases where

their wind speed predictions are not better than other

models’ on average.

c. Variable importance

To gain insight into why the neural networkwas able to

improve performance over the HWRFmodel, we ranked

predictors according to the Garson variable importance

score. This is a simple method that compares products of

neural network weights to obtain a ‘‘relative impor-

tance’’ score for each predictor, as described in Goh

(1995). In the case of a three layer network, variable

importance of predictor i of p is calculated as

g
i
5

c
i

�
p

k51

c
k

, with c
i
5�

j

jw2
j,iw

3
1,jj.

Figure 6 shows the top five variables in the neural net-

work according to their Garson variable importance

score. The HWFI VMAXwas by far the most important

predictor at all lead times, although its importance

slowly decreased by lead time. The current operational

VMAX value is scored as the second most influential

FIG. 5. Basin-specific distributions of 24-h intensity change: distributions of the 24-h intensity change Dymax

predicted by NN (orange) in (a) the Atlantic and (c) the eastern Pacific, and also by the HWFI (dark green) in (b) the

Atlantic and (d) the eastern Pacific. Cyan highlighted circles indicate where the observed best-track 24-h intensity change

was at least 30 kt. The dotted and solid horizontal lines demarcate the 0- and 30-kt values of intensity change.
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predictor for short lead times. For lead times greater than

30h, other HWRF-based predictors began to take on in-

creasing prominence. This makes sense, as one would ex-

pect the current observed maximum wind speed to be a

worse predictor as lead times increase. Minimum sea level

pressure, another common metric of TC intensity, be-

comes increasingly important and is the second-most cru-

cial variable by 30h. At all lead times, the latitude (LAT)

of the storm center maintains a relatively constant im-

portance and varies between the third and fourth most

important variable. The variable LAT determines the

probability space of important environmental parameters

and it also sets the Coriolis force. The next most important

variable the storm speed, which can directly impact in-

tensity by modifying the feedback of storm-induced sea

surface temperature reduction (e.g.,Mei et al. 2012) or also

indicate environmental impacts on the TC (e.g., a fast-

moving TC being impacted by a midlatitude trough).

Storm motion also creates an azimuthal wavenumber-1

asymmetry in the boundary layer thatmay impact intensity

(e.g., Shapiro 1983; Jorgensen 1984).

d. Case studies

To better highlight the real-time performance of the

NN, we now consider some case studies of TCs in 2017

that experienced RI. With the strength of the NN re-

siding in RI prediction, we focus now on 24-h forecasts

of intensity. Figure 7 shows 24-h forecasts of intensity for

eastern Pacific Kenneth, and Atlantic Hurricanes Har-

vey, Lee, andMaria from the NHC, HWFI, and the NN.

Also plotted are the verifying best track observations of

intensity. This figure also highlights periods of RI over

the previous 24 h for the observations and for the 24-h

intensity predictions that qualify as RI.

In terms of 24-h forecasts of intensity, each storm

indicates a mixture of successes and failures for the NHC,

HWFI, and NN 24-h intensity forecasts. There is some

tendency for all 24-h predictions to underestimate the

initial intensification period and for the predictions to be

too slow in weakening the storm. The case studies also

provide some insight into the RI prediction of each of the

forecasts. In the case ofHurricaneKenneth (Fig. 7a), none

of the models perform particularly well at predicting its

period of RI on 19–21 August and actually produce some

false alarms for the 24-h period ending at 1800 UTC

19 August (HWFI) and 0000 UTC 20 August (HWFI and

the NN). While the NN failed to achieve the maximum

intensity that was observed in Kenneth, its peak intensity

was slightly better timed than the HWFI and NHC. Hur-

ricane Harvey (Fig. 7b) yielded some of the best RI pre-

dictions for the NN, where it correctly captured 6 of 7 24-h

periods of RI compared to 3 and 2 correct RI predictions

by the NHC and from HWFI, respectively. Both the

HWFI and NN performed fairly well for the RI period in

Lee (Fig. 7c). Finally, the NNperformed respectably in RI

prediction for Maria, having one false alarm and missing

RI at 3 of the 7 times of verifying RI (Fig. 7d). Overall, the

case studies are consistent with the more general Gilbert

and Brier skill score results described earlier.

5. Discussion and conclusions

In conclusion, a feed forward neural network has been

developed for the prediction of tropical cyclone (TC)

intensity. This deep learning model incorporated both

the real-time operational estimate of the current in-

tensity and predictors derived from Hurricane Weather

Research and Forecasting (HWRF; 2017 version) model

forecasts. The model was developed with operational

constraints in mind, where numerical weather predic-

tion (NWP) model output produced at synoptic times is

typically not yet available at the same synoptic times

that the operational centers issue TC intensity forecasts.

Therefore, 6-h-old HWRF data were used in making

a forecast as would be done in an operational environ-

ment. Best track intensity data were used for observa-

tional verification. The forecast training data were from

2014–16 HWRF reforecasts and covered a wide variety

of TCs from both the eastern Pacific and Atlantic Ocean

basins. Tenfold cross validation showed that the neural

network outperforms the HWRF in terms of mean ab-

solute error (MAE) at all lead times and was increasingly

better than the observation-adjusted HWRF (HWFI)

with increasing lead time. Out-of-sample testing on real-

time data from 2017 showed the neural network pro-

duces lower MAE than the HWRF in the first 15h of a

forecast but performed similarly at later lead times. In this

FIG. 6. Variable importance by lead time: importance of the

overall top five most important predictors as determined by Garson

variable importance measure, measured across different lead times.
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out-of-sample test, the HWFI actually performed even

better than the neural network at earlier lead times.

The most notable strength of the neural network is in its

ability to predict 24-h rapid intensification (RI) in the out-

of-sample testing period from year 2017. Gilbert skill

scores were 0.35 for the neural network, while they were

0.10 and 0.09 for the HWFI and official National Hurri-

cane Center forecasts, respectively. In comparison with

the operational SHIPS-RII probabilistic model, the neural

network produces superior skill in the combined Atlantic

and eastern Pacific basins for the out-of-sample 2017 data.

The neural network particularly excelled in the busy 2017

Atlantic hurricane season, which featured numerous RI

events between several major hurricanes.

Overall, the feed forward neural network for in-

tensity prediction is a computationally inexpensive

postprocessing method that can be applied to any op-

erational NWP TC model. The neural network excels

in the prediction of RI. Reliable RI prediction has been a

particularly challenging prediction problem. Hence, any

postprocessing scheme that can significantly enhance the

predictive skill of RI over that produced by its base-

line NWP model would be a great asset to operational

forecast centers. While the neural network is computa-

tionally efficient, it is important to note that there is a

significant upfront cost in that a sufficiently large refor-

ecast dataset must be generated in order to produce a

robust and reliable postprocessing system. Fortunately,

each time a model is updated and improved, it is not

uncommon for operational forecast centers to generate

reforecasts of past events. The encouraging results from

postprocessing methods, particularly in the advent of

machine learning methods for NWP, motivate the con-

tinued practice of generating large samples of reforecasts.
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FIG. 7. Case studies for out-of-sample storms: best track intensity (black) and the predicted intensities as forecast 24 h

earlier from the NHC (blue), HWFI (green), and NN (orange) for four different 2017 TCs that experienced RI:

(a) eastern Pacific Kenneth, (b) Atlantic Harvey, (c) Atlantic Lee, and (d) Atlantic Maria. The bold dots and bold

segments indicate times in whichRI had occurred over the previous 24 h in the observations and predictions. The shaded

gray regions highlight the times where the verifying best track intensity indicated RI in the previous 24 h.
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